Chemical vapour deposition of Si_3N_4 from a gas mixture of Si_2Cl_6 , NH_3 and H_2

SEIJI MOTOJIMA, NORIYUKI IWAMORI

Department of Industrial Chemistry, Faculty of Engineering, Gifu University, Gifu 501-11, Japan

TATSUHIKO HATTORI

Research Laboratory, Toa-Gosei Chemical Industry Co. Ltd, 1-1 Funamicho, Minato-ku, Nagoya 455, Japan

Si₃N₄ layers were obtained on a quartz substrate from a gas mixture of Si₂Cl₆, NH₃ and H₂ under a reduced pressure in a temperature range of 800 to 1300° C. Amorphous Si₃N₄ layers that were dense and adherent to the substrate were obtained in a temperature range of 800 to 1100° C. On the other hand, α -Si₃N₄ layers were obtained at 1200° C and a source-gas ratio (N/Si) of 1.33 to 1.77. The lowest deposition temperature of amorphous Si₃N₄ was considered to be about 700° C. The microhardness of amorphous Si₃N₄ obtained in a temperature range of 800 to 1100° C was 2400 to 2600 kg mm⁻² (load: 50 g), and that of α -Si₃N₄ obtained at 1200° C was 3400 kg mm⁻². Chlorine contents in the Si₃N₄ layer decreased with increasing deposition temperature and source-gas ratio (N/Si), and with decreasing total pressure.

1. Introduction

Silicon nitride has many excellent mechanical and chemical characteristics, such as high strength, high hardness, high thermal shock resistance (low thermal expansion and high thermal conductivity), good oxidation and corrosion resistivities, as well as good protective abilities against diffusion of O_2 , H_2O , Na⁺ and other diffusive species. Therefore, it is considered to be the most promising candidate for hightemperature engineering applications and for passivating the protective coatings of electronic devices.

Protective applications of Si_3N_4 coatings obtained by the CVD process, against wear, abrasion, erosion, oxidation and corrosion, have been extensively examined. For example, Si_3N_4 -coated tools have been successfully applied for machining CuBe and aluminium alloys with a high silicon content, and can be used as punches or dies for forming copper and aluminium materials [1]; they are especially used at high speeds and rates where conventional tools cannot be used [2].

 Si_3N_4 has been prepared from a number of silicon sources. SiH_4 has been exclusively used industrially to prepared Si_3N_4 layers for passivating protective applications to electronic devices [3–9]. Also, related compounds such as SiF_4 [10], SiF_2 [11] and SiH_3F [12] have recently been examined. Si_3N_4 coatings using a photo-CVD process sensitized by mercury vapour [13] or a magnetron sputtering process [14] have also been examined.

 $SiCl_4$ has been used most frequently for the preparation of Si_3N_4 coatings which are intended for use in high-temperature mechanical applications. Hirai and co-workers [15–19] have reported the preparation of Si_3N_4 from a gas mixture of SiCl₄, NH₃ and H₂ under

a reduced pressure of 5 to 300 torr in a temperature range of 1100 to 1500° C. Other silicon sources, such as SiHCl₃ [20], SiH₂Cl₂ [21-23], SiBr₄ [24] and Si(CH₃)₄ [25, 26] have also been examined. Morosanu [27] has reviewed the preparation, characterization and applications of Si₃N₄. Furthermore, Kingon et al. [28] have reviewed the preparation of Si_3N_4 by the CVD process, and summarized the literature. They have also calculated CVD phase diagrams using a computer program. The CVD phase diagram for the system SiCl₄-NH₃ reveals that Si₃N₄ may be deposited at 800° C, and the lowest deposition temperature decreases as the system pressure decreases. However the lowest deposition temperature of Si₃N₄ layers from the gas system SiCl₄-NH₃ actually obtained is 1000 to 1100° C.

Hexachlorodisilane (Si_2Cl_6) is now available commercially as a test sample reagent. Some of the physical and thermodynamical properties of Si_2Cl_6 are shown in Table I. This compound is more unstable, and has a higher activity than that of $SiCl_4$. Thus, using Si_2Cl_6 as a silicon source, it is expected to form Si_3N_4 deposits at lower temperatures than in the case of $SiCl_4$. We have reported on the deposition of SiClayers from a gas mixture of Si_2Cl_6 , C_3H_8 and H_2 [29].

TABLE I Some properties of hexachlorodisilane (Si_2Cl_6)

Melting point	-1°C
Boiling point	144° C
Vapour pressure	$\log P = 5.98 - 911/(t + 145)$
	$(P; \text{ mm Hg}, t; ^{\circ}C)$
Heat of evaporation	$42 \mathrm{kJ}\mathrm{mol}^{-1}$
Heat of formation	986.5 kJ mol ⁻¹
Specific heat	$C_{\rm n} = 42.15 + 1.03 \times 10^{-3} T$
	$-8.46 \times 10^5 T^{-2}$
	$(T; \mathbf{K})$

Figure 1 Experimental apparatus. (A) NH_3 , H_2 and argon inlet, (B) Si_2Cl_6 and H_2 inlet, (C) reactor (quartz, 22 mm i.d. and 400 mm long), (D) observation window, (E) aspirator, (F) electrode, (G) substrate (quartz tube, 7 mm o.d. and 100 mm long), (H) SiC rod heater, (I) carbon powder.

In this work, we have obtained Si_3N_4 layers on a quartz substrate from a gas mixture of Si_2Cl_6 , NH_3 and H_2 under a reduced pressure, and examined the growth conditions and some of the properties of the Si_3N_4 layers obtained.

2. Experimental procedure

 Si_2Cl_6 (purity at least 99.5%) was obtained from Toa-Gosei Chemical Industrial Co., Japan. Highpurity NH₃ gas (99.99%) obtained commercially was used without further purification. H₂ and argon gases were purified by passing through molecular sieves. The experimental apparatus used is shown schematically in Fig. 1. In the central part of the reaction tube (quartz, 22 mm internal diameter and 400 mm long), a tubular substrate (quartz, 7 mm outer diameter and 100 mm long) was located and heated dually from the outer nichrome element and an inner SiC rod heater. The temperature of the substrate was measured using an optical pyrometer from the observation window.

Elemental analysis of the Si_3N_4 deposits obtained was carried out using an energy-dispersive type of electron probe microanalyser (Akashi, EMAX-8000S). In this work, the gas flow rates of Si_2Cl_6 , NH₃

Figure 2 Effect of the deposition temperature on the growth rate of Si_3N_4 layers. Si_2Cl_6 flow rate: 0.028 ml sec⁻¹, NH₃ flow rate: 0.1 ml sec⁻¹, H₂ flow rate: 1.0 ml sec⁻¹, total gas pressure: 25 torr.

Figure 3 Effect of the total gas pressure on the growth rate of Si_3N_4 layers. Si_2Cl_6 flow rate: $0.028 \text{ ml sec}^{-1}$, NH_3 flow rate: 0.1 ml sec^{-1} , H_2 flow rate: 1.0 ml sec^{-1} . Deposition temperature: (•) 900° C, (0) 1000° C.

and H_2 were fixed at 0.028, 0.1 and 1.0 ml sec⁻¹, respectively, unless otherwise described. Also, the total gas pressure was fixed at 25 torr unless otherwise described.

3. Results and discussion

3.1. Effect of deposition parameters on the deposition rate

The effect of deposition temperature on the growth rate of Si_3N_4 layers is shown in Fig. 2, in which the thickness of the Si_3N_4 layers was measured at the central part of the quartz substrate.

Apparent Si₃N₄ deposition was observed at 800° C and the growth rate increased linearly with increasing deposition temperature. In this work, deposition experiments could not be carried out at temperatures below 800° C, because of the limitations of the optical pyrometer. However, the lowest deposition temperature of Si₃N₄ is considered to be about 700° C. In the low-pressure CVD process, it is well known that the deposition rate and deposited phases are significantly affected by the total gas pressure, gas flow rates and ratios. The effect of the total gas pressure on the growth rate of the Si₃N₄ layers is shown in Fig. 3. The growth rate increased with increasing total gas

Figure 4 Effect of the source gas ratio (N/Si) and deposition temperature on the deposited phases. Si₂Cl₆ flow rate: 0.028 ml sec⁻¹, H₂ flow rate: 1.0 ml sec⁻¹, total gas pressure: 25 torr. (Δ) Silicon single phase or mixed phase of silicon and amorphous Si₃N₄ (Region A), (\odot) amorphous Si₃N₄ single phase (Region B), (\bullet) α -Si₃N₄ phase (Region C).

Figure 5 Representative X-ray diffraction patterns (CuK α radiation). Si₂Cl₆ flow rate: 0.028 ml sec⁻¹, NH₃ flow rate 0.1 ml sec⁻¹, H₂ flow rate: 1.0 ml sec⁻¹, total gas pressure: 25 torr, deposition temperature: (a) 800° C, (b) 1100° C, (c) 1200° C. (d) Commercially obtained α -Si₃N₄ (99.99% purity).

pressure and attained a constant value at pressures above 75 torr, irrespective of the growth temperature. This increase of the growth rate is probably caused by the increase of the residence time in the reaction zone of reactant gases. A similar tendency has been observed by Hirai *et al.* [16] in the deposition of Si_3N_4 from a gas mixture of $SiCl_4$, NH_3 and H_2 . At the deposition

temperature of 1100° C, the growth rate increased with increasing source gas ratio of N/Si and attained a constant at the stoichiometric ratio of N/Si = 1.33. On the other hand, at 1200° C, maximum growth rate was attained at the stoichiometric ratio. The growth rate increased with increasing source gas ratio H/Cl, and the value obtained at the ratio H/Cl = 35 was three times higher than that obtained at H/Cl = 10.

3.2. Effect of deposition parameters on the phase and morphology of the deposits

The effect of the source gas ratio (N/Si) and deposition temperature on the phase of the deposits is shown in Fig. 4, in which the flow rate of Si_2Cl_6 was fixed at $0.028 \text{ ml sec}^{-1}$ and that of NH₃ was varied. Phases were determined using X-ray diffraction, etching tests and the Vickers microhardness. Deposition of singlephase silicon or mixed phases of silicon and amorphous Si_3N_4 layers were observed at a lower source gas ratio (N/Si) than the stoichiometric ratio of $Si_3N_4(N/Si = 1.33)$ (Region A in Fig. 4), irrespective of the deposition temperature. An amorphous Si₃N₄ phase was obtained at low deposition temperatures (Region B). On the other hand, above the stoichiometric source gas ratio (N/Si = 1.33) and above 1200° C, deposition of α -Si₃N₄ phase was confirmed by X-ray diffraction (Region C).

Representative X-ray diffraction patterns from the surfaces of the deposits are shown in Fig. 5, together with that of commercially obtained α -Si₃N₄ powder (99.99% purity). Appreciable α -Si₃N₄ peaks are observed for the deposits obtained at 1200° C. However, no apparent peaks were seen for deposits obtained below 1100° C, indicating an amorphous phase.

The appearance of the surfaces of the Si_3N_4 layers obtained at various deposition temperatures are shown in Fig. 6. Amorphous Si_3N_4 layers obtained in a temperature range of 800 to 1100° C are translucent in thin layers with good adherence to the substrate, and small pebbles or hillocks without any crystal facets are observed on the surfaces (Figs 6a and b). On the other hand, many crystal facets can be seen on the

Figure 6 SEM photographs of the surfaces of Si_3N_4 layers. Si_2Cl_6 flow rate: 0.028 ml sec⁻¹, NH₃ flow rate: 0.1 ml sec⁻¹, H₂ flow rate: 1.0 ml sec⁻¹, total gas pressure: 25 torr, deposition temperature: (a) 800° C, (b) 1000° C, (c) 1200° C. (a) and (b) amorphous Si_3N_4 , (c) α -Si₃N₄.

Figure 7 SEM photographs of the ruptured cross-sections of Si_3N_4 layers. Si_2Cl_6 flow rate: 0.028 ml sec⁻¹, NH₃ flow rate: 0.1 ml sec⁻¹, H₂ flow rate: 1.0 ml sec⁻¹, total gas pressure: 25 torr. (a) Amorphous Si_3N_4 deposited at 800° C, (b) α -Si₃N₄ deposited at 1300° C.

Figure 8 SEM photographs of the polished cross-sections of Si_3N_4 layers. Si_2Cl_6 flow rate: 0.028 ml sec⁻¹, NH₃ flow rate: 0.1 ml sec , H₂ flow rate: 1.0 ml sec⁻¹. (a) Amorphous Si_3N_4 deposited at 800° C, (b) α -Si₃N₄ deposited at 1200° C; (l) amorphous Si_3N_4 layer, (II) α -Si₃N₄ layer, (III) quartz substrate.

surface of α -Si₃N₄ layers obtained at 1200° C (Fig. 6c). The appearance of the ruptured cross-sections of amorphous and α -Si₃N₄ layers are shown in Fig. 7. Small irregular crack patterns can be seen on the

ruptured cross-section of an amorphous Si_3N_4 layer, while apparent columnar structures can be seen on that of α -Si₃N₄ layers. Amorphous Si₃N₄ layers were very dense and strongly adherent to the quartz substrate as can be seen in Fig. 8.

Various interesting surface morphologies of the Si_3N_4 obtained at 1200°C are shown in Fig. 9. At a low source gas ratio of N/Si (Region A in Fig. 4), pillar-like silicon co-deposition can be seen on an amorphous Si_3N_4 layer (Fig. 9a). On the other hand, α -Si₃N₄ globular polycrystals can be seen here and there on an amorphous Si_3N_4 layer obtained at

Figure 9 Peculiar surface morphologies. Deposition temperature: 1200° C. (a) Pillar-like silicon deposits formed on the amorphous Si_3N_4 layers in Region A of Fig. 4, (b) α -Si₃N₄ deposits formed on the amorphous Si_3N_4 layers at the boundary of Regions B and C in Fig. 4, (c) peculiar facet arrays of α -Si₃N₄ obtained in Region C of Fig. 4.

Figure 10 Effect of the deposition temperature on the silicon and chlorine contents in the Si_3N_4 layers. Si_2Cl_6 flow rate: 0.028 ml sec⁻¹, NH₃ flow rate: 0.1 ml sec⁻¹. (•) Silicon content, (\circ) chlorine content.

deposition conditions in the boundary of Regions B and C in Fig. 4 (Fig. 9b). Sometimes, circular crystal facet arrays were observed on the α -Si₃Ni₄ layers deposited in Region C of Fig. 4 (Fig. 9c). These facet arrays are probably formed by the development of crystal nuclei, as can be seen in Fig. 9b, formed here and there on the substrate.

 α -Si₃N₄ layers obtained at 1200° C showed a slightly yellowish colour, and were tightly adherent to the substrate.

3.3. Effect of deposition parameters on the composition of the deposits

Silicon and chlorine contents in the Si₃N₄ deposits were estimated roughly by the ratio of the peak areas of SiKa (1.66 to 1.88 keV) and ClKa (2.58 to 2.86 keV) in the deposits to that of $SiK\alpha$ (1.66 to 1.88 keV) of the silicon wafer, respectively. The effects of the deposition temperature on the silicon and chlorine contents in the deposits are shown in Fig. 10. The silicon content in the deposits increased with increasing deposition temperature and attained a constant value at temperatures above $900^{\circ}\,C.$ On the other hand, the chlorine content decreased with increasing deposition temperature and attained a constant value of about 0.025. The low silicon content in the deposits obtained below 900° C is probably attributable to the inclusion of some amount of hydrogen and/or chlorine. The effects of the total gas pressure on the silicon and chlorine contents in the deposits are shown in Fig. 11, in relation to the deposition temperature. The silicon content decreased with increasing total gas pressure and attained a constant value at pressures above 50 torr. On the other hand, the chlorine content in the deposits obtained at 900°C increased rapidly with increasing total pressure and reached a high value of 0.04 at 75 torr. The effect of the source gas ratio (N/Si) on the silicon and chlorine contents in an amorphous Si_3N_4 obtained at 1100° C is shown in Fig. 12. The silicon content increased with increasing source gas ratio (N/Si) and attained a constant value at the stoichiometric ratio of N/Si = 1.33, while the chlorine content decreased gradually at ratios (N/Si) above 1.8. On the other hand, no appreciable effects of the source gas ratio (H/Cl) on the silicon and chlorine contents were observed at ratios above 18, as shown in Fig. 13.

In applications of Si_3N_4 layers to wear- or abrasionresistant coatings, it may reasonably be considered that a high inclusion rate of chlorine in the coated layers causes severe deterioration of the resistance, as in the case of TiN-coated cutting inserts in which flank wear increased exponentially with increasing chlorine content [30]. Thus, it may be considered that more highly wear- or abrasion-resistant coating layers of Si_3N_4 are obtained at low total pressures below 50 torr, high deposition temperatures above 1000° C, and high source gas ratios of N/Si above 1.8.

Figure 11 Effect of the total gas pressure on the silicon and chlorine contents in the Si_3N_4 layers. Si_2Cl_6 flow rate: 0.028 ml sec⁻¹, NH₃ flow rate: 0.1 ml sec⁻¹, H₂ flow rate: 1.0 ml sec⁻¹. (\bullet) Silicon content of amorphous Si_3N_4 obtained at 900° C, (\circ) chlorine content of Si_3N_4 obtained at 900° C, (\diamond) chlorine content of α -Si₃N₄ obtained at 1200° C.

Figure 12 Effect of the source gas ratio (N/Si) on the silicon and chlorine contents in the Si₃N₄ layers. Si₃N₄ flow rate: $0.028 \text{ ml sec}^{-1}$, deposition temperature: 1100° C, total gas pressure: 25 torr. (•) Silicon content, (\circ) chlorine content.

3.4. Effect of deposition parameters on the Vickers microhardness

The Vickers microhardness of the Si_3N_4 layers was measured on polished cross-sections using a hardness tester (Akashi, MVK-1). The effect of the deposition temperature on the Vickers microhardness of Si_3N_4 layers is shown in Fig. 14. The hardness was measured at room temperature and an indentation load of 50 g. The hardness of the amorphous Si_3N_4 layers obtained at 800° C was about 2400 kg mm⁻², and it increased

Figure 14 Effect of the deposition temperature on the Vickers microhardness. Si₂Cl₆ flow rate: $0.028 \text{ m} \text{lsec}^{-1}$, NH₃ flow rate: $0.1 \text{ m} \text{lsec}^{-1}$, H₂ flow rate: $1.0 \text{ m} \text{lsec}^{-1}$, total gas pressure: 25 torr. Indentation load: 50 g.

Figure 15 Effect of the total gas pressure on the Vickers microhardness of amorphous Si_3N_4 layers. Si_2Cl_6 flow rate: $0.028 \text{ ml sec}^{-1}$, NH_3 flow rate: 0.1 ml sec^{-1} , H_2 flow rate: 1.0 ml sec^{-1} , deposition temperature: 900° C.

Figure 13 Effect of the source gas ratio (H/Cl) on the silicon and chlorine contents in the Si_3N_4 layers. Si_2Cl_6 flow rate: $0.028 \text{ m} \text{lsec}^{-1}$, NH_3 flow rate: $0.1 \text{ m} \text{lsec}^{-1}$, deposition temperature: 1100° C, total gas pressure: 25 torr. (•) Silicon content, (O) chlorine content.

gradually with increasing deposition temperature, followed by a rapid increase at temperatures above 1000° C to the high value of 3400 kg mm^{-2} for the α -Si₃N₄ obtained at 1200° C. These values are considerably higher than that reported by Niihara and Hirai [31]. The effect of the total gas pressure on the Vickers microhardness of amorphous Si₃N₄ layers obtained at 900° C is shown in Fig. 15. The hardness decreased gradually with increasing total gas pressure, as in the case using SiCl₄ as a silicon source [31]. These results show that high hardness is obtained at deposition temperatures above 1000° C and total gas pressures below 50 torr.

References

- W. HÄNNI and H. E. HINTERMANN, in Proceedings of 8th International Conference on CVD, Gouvieux, France, 1981 (The Electrochemical Society, Pennington, 1981) p. 597.
- 2. M. FUKUHARA, K. FUKAZAWA and A. FUKAWA, *Wear* **102** (1985) 195.
- 3. M. MAEDA and Y. ARITA, J. Appl. Phys. 53 (1982) 6852.
- 4. K. KATOH, M. YASUI and H. WATANABE, Jpn J. Appl. Phys. 22 (1983) L321.
- 5. C. BLAAUW, J. Electrochem. Soc. 131 (1984) 1114.
- 6. H. Y. KUMAGAI, in Proceedings of 9th International Conference on CVD, Cincinatti, Ohio, 1984 (The Electrochemical Society, Pennington, 1984) p. 189.
- 7. V. S. NGUYEN, ibid. p. 213.
- Y. K. FANG, C. F. HUANG, C. Y. CHANG and R. H. LEE, J. Electrochem. Soc. 132 (1985) 1222.
- 9. K. ALLAERT, A. VAN CALSTER, H. LOOS and A. LEGUESNE, *ibid.* 132 (1985) 1763.
- F. FUJITA, H. TOYOSHIMA, T. OHISHI and A. SAKAKI, Jpn J. Appl. Phys. 23 (1984) L144.
- 11. Idem, ibid. 23 (1984) L268.
- 12. A. MATSUDA, K. YAGI, T. KAGA and K. TANAKA, *ibid.* 23 (1984) L576.
- 13. K. HAMANO, Y. NUMAZAWA and K. YAMAZAKI, *ibid.* 23 (1984) 1209.
- 14. T. SERIHARA and A. OKAMOTO, J. Electrochem. Soc. 131 (1984) 2928.
- 15. K. NIIHARA and T. HIRAI, J. Mater. Sci. 11 (1976) 593.
- T. HIRAI, K. NIIHARA and T. GOTO, J. Jpn Inst. Met. 41 (1977) 358.
- 17. Idem, J. Mater. Sci. 12 (1977) 631.
- T. HIRAI and S. HAYASHI, in Proceedings of 8th International Conference on CVD, Gouvieux, France, 1981 (The Electrochemical Society, Pennington 1981) p. 790.
- 19. T. HIRAI, Mater. Sci. Res. 17 (1984) 329.
- J. BÜHLER, E. FITZER and D. KEHR, in Proceedings of 6th International Conference on CVD, Atlanta, Georgia, 1977 (The Electrochemical Society, Princeton, 1977) p. 493.

- 21. C. E. MOROSANU and E. SEGAL, *Thin Solid Films* 88 (1982) 339.
- 22. Idem, ibid. 91 (1982) 251.
- 23. T. MAKINO, J. Electrochem. Soc. 130 (1983) 450.
- 24. J. A. ABOAF, ibid. 116 (1969) 1736.
- J. F. LARTIGUE, M. DUCARROIR and B. ARMAS, in Proceedings of 9th International Conference on CVD, Cincinatti, Ohio, 1984 (The Electrochemical Society, Pennington, 1984) p. 561.
- 26. J. F. LARTIGUE and F. SIBIEUDE, *ibid.* p. 583. 9th International Conference on CVD, 1984, p. 583.
- 27. C. -E. MOROSANU, Thin Solid Films 65 (1980) 171.
- 28. A. I. KINGON, L. J. LUTZ and R. F. DAVIS, J. Amer. Ceram. Soc. 66 (1983) 551.

- 29. S. MOTOJIMA, N. IWAMORI, T. HATTORI and K. KUROSAWA, J. Mater. Sci. 21 (1986) 1363.
- N. KIKUCHI, Y. OOSAWA and A. NISHIYAMA, in Proceedings of 9th International Conference on CVD, Cincinatti, Ohio, 1984 (The Electrochemical Society, Pennington, 1984) p. 728.
- 31. K. NIIHARA and T. HIRAI, J. Mater. Sci. 12 (1977) 1243.

Received 18 November 1985 and accepted 10 January 1986